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Abstract 

Background: With the increase in unprecedented and unpredictable disease outbreaks due to human-driven 
environmental changes in recent years, we need new analytical tools to map and predict the spatial distribution of 
emerging infectious diseases and identify the biogeographic drivers underpinning their emergence. The aim of the 
study was to identify and compare the local and global biogeographic predictors such as landscape and climate that 
determine the spatial structure of leptospirosis and Buruli Ulcer (BU).

Methods: We obtained 232 hospital-confirmed leptospirosis (2007–2017) cases and 236 BU cases (1969–2017) in 
French Guiana. We performed non-spatial and spatial Bayesian regression modeling with landscape and climate 
predictor variables to characterize the spatial structure and the environmental drivers influencing the distribution of 
the two diseases.

Results: Our results show that the distribution of both diseases is spatially dependent on environmental predic-
tors such as elevation, topological wetness index, proximity to cropland and increasing minimum temperature at 
the month of potential infection. However, the spatial structure of the two diseases caused by bacterial pathogens 
occupying similar aquatic niche was different. Leptospirosis was widely distributed across the territory while BU was 
restricted to the coastal riverbeds.

Conclusions: Our study shows that a biogeographic approach is an effective tool to identify, compare and predict 
the geographic distribution of emerging diseases at an ecological scale which are spatially dependent to environ-
mental factors such as topography, land cover and climate.
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Introduction
In recent years, rapid global and local environmental 
changes (e.g. deforestation, pollution, climate change) 
in the tropics have led to significant modifications in 
biodiversity [1]. Such rapid changes have underpinned 
alteration of host–pathogen patterns leading to more 
frequent and random emerging infectious disease (EID) 
outbreaks [2–4]. The direct and indirect consequences of 

these human-driven environmental changes result in the 
alteration of the geographic distribution of aquatic hosts 
and/or reservoir with a direct effect on the distribution 
of their pathogens (i.e. bacteria, viruses, parasites, fungi) 
[2]. Thus, the past and current geographical distribution 
of suitable habitats constrain pathogens survival and 
growth [3], leading to the redistribution of EIDs’ risk in 
local human populations. For example, deforestation has 
recently been linked to an increased risk of Buruli Ulcer 
(BU), a bacterial skin disease due to Mycobacterium 
ulcerans with high tropism for skin and causing severe 
ulcerations in humans [4]. Globally, over 20  years, the 
need for arable lands in the tropics in response to a rapid 
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growing human population has led to a 28% decrease of 
primary forest [5]. Studies have demonstrated that small 
physical changes influenced by deforestation and climate 
in freshwater systems lead to significant restriction in 
the distribution of biota, altering the dynamics of these 
ecosystems [6, 7]. These freshwater habitats also act as 
a carrier of certain pathogens capable of causing human 
disease. Thus, rapid alterations in freshwater habitats 
can influence the exposure of the pathogen to humans, 
resulting in emergence of disease in a region over time. 
The global significance of EIDs caused by pathogens 
found freshwater habitats has been less studied in com-
parison to terrestrial ones [7–9] at an ecological scale. 
Outside malaria and cholera, there is little evidence link-
ing spatial–temporal patterns of EIDs in human popula-
tion and biogeographical freshwater drivers.

To construct a better understanding of biogeographi-
cal drivers influencing the local distribution of EIDs, the 
dynamics of human cases has to be analyzed in space 
and time in light of significant factors such as topogra-
phy, land cover and climate. All three factors have direct 
implications in the availability of freshwater, the distri-
bution in time and space of this water and on the type 
of aquatic habitats (i.e. flowing vs stagnant). It remains 
unclear if the emergence, transmission and distribution 
of EIDs in a region can be determined based on the spa-
tiotemporal relationship between the disease incidence 
and these environmental factors. We hypothesize that 

the spatial structures of two EIDs caused by pathogenic 
bacteria occupying similar freshwater niche may overlap 
if a spatial pattern exists.

Here we used a couple of pathogenic aquatic bacte-
ria, Leptospira spp., responsible for leptospirosis and M. 
ulcerans responsible of BU, as biological models to test 
our biogeographical predictions. These two infections are 
severe re-emerging diseases of epidemiological concern 
in humans in intertropical regions like French Guiana 
(FG), the area of study [10–12]. Although the transmis-
sion dynamics of the two bacteria are widely different, 
the mode of transmission to humans involves direct con-
tact with aquatic habitats contaminated by the bacte-
ria (Fig. 1). Leptospirosis is one of the most widespread 
zoonotic diseases as it occurs in temperate and tropical 
regions, and in urban and rural settings, dependent on 
the spatial distribution of its mammal reservoir, espe-
cially rodents such as Rattus rattus and Rattus norvegi-
cus. Studies demonstrated that culturable pathogenic 
Leptospira were detected in soil for at least 16 days and 
in spring water for 28  days [13]. This suggests that the 
environment is not a multiplication reservoir but rather 
a temporary carrier for pathogenic Leptospira. While 
BU, on the other hand, is a generalist pathogen, globally 
more restricted in its spatial distribution to regions near 
wetlands and slow-moving rivers, notably areas prone 
to flooding in humid tropical and subtropical areas. M. 
ulcerans DNA has been detected in sediments, mud, 

Fig. 1 a Transmission dynamics of leptospirosis illustrating the host–pathogen–environment interface. b Transmission dynamics of Buruli Ulcer; MU 
represents Mycobacterium ulcerans 



Page 3 of 12Jagadesh et al. Int J Health Geogr           (2019) 18:23 

detritus, biofilms, and aquatic invertebrates in still lentic 
and flowing lotic systems in the environment [14]. The 
transmission dynamics of BU still remains unclear, but is 
believed to be related to exposure to freshwater systems 
that contains M. ulcerans through abraded skin [14]. The 
public health response to the presence of pathogenic bac-
teria in the environment at present is reactionary. How-
ever, systematic surveillance of the pathogenic bacteria in 
the environment would aid in the prediction and control 
of outbreaks.

The overall aim of our study was to identify the patterns 
of leptospirosis and BU cases distribution and to quantify 
the local and regional biogeographic drivers underpin-
ning such distribution. We hypothesized (1) that the local 
topography, land cover and climate spatially influenced 
the distribution of both diseases, and (2) that a distinct 
spatial pattern exists for the environmental drivers of 
both diseases, although spatial patterns may overlap as 
both infectious agents occupy similar freshwater niches. 
Such understanding is important to local Health Agen-
cies in order to optimize local developments and habitat 
management as well as to incorporate EIDs risk in the 
decisions of local planers.

Materials and methods
Ethics statement
The study protocol was approved by Cayenne General 
Hospital authorities according to French ethical rules. 
The leptospirosis and BU database were declared to the 
Commission National Informatique et Libertés; numbers 
CNIL NO 2068308 and CNIL NO 3X#02254258 respec-
tively following the requirements imposed by the French 
law. The database was anonymized and excluded from 
variables that facilitates identification of the patients. The 
leptospirosis and BU cases received appropriate treat-
ment as per the French laws in public health.

Study area
Our study was conducted in French Guiana (FG), 
an overseas territory of France, located at 3.9339° N, 
53.1258° W in South America (Fig.  2). The territory is 
divided in 22 administrative units termed as communes. 
Despite its land area of 83,534  km2, the territory has a 
low population density of 3.11/km2 with 72.78% (95 CI 
0.726–0.728) of the total population living along the lit-
toral region. Around 95% of the total land area is clas-
sified as primary rainforest forming a major portion of 
the highly biodiverse Guiana shield. The proportion of 
primary tree cover loss between the years 2001–2018 in 
FG was reported to be 0.6% and the loss per year (2011–
2018) was 3200.69 trees/year. The land area also includes 
distinct areas of savannahs, wetlands, and coastal 

mangroves. The region is characterized by cyclic wet and 
dry seasons (Fig. 2).

Diagnostic criteria and patient data
Cases of leptospirosis were defined as a case with ongo-
ing symptoms that are compatible with the clinical 
description of the disease along with a positive PCR 
result or a fourfold rise in titer in 2 weeks measured by 
microscopic agglutination test (MAT) or a positive IgM 
ELISA. Cases from 2007 to 2014 (from January 1, 2007 to 
September 30, 2014) were validated by checking one by 
one all the medical charts. These cases were confirmed by 
having a positive PCR from blood or urine samples, cer-
ebrospinal fluid and/or a MAT seroconversion with MAT 
titers ≥ 100 and/or a fourfold increase in MAT titers on 
two consecutive sera samples, and/or MAT titers ≥ 200 
and/or a positive MAT titer with IgM seroconversion or 
IgM elevated titer. Cases from 2007 to 2014 were used in 
a previously published paper where the methodology is 
described in details [15]. Cases from 2014 to 2017 (from 
October 1, 2014 to December 31, 2017) were added 
to this study. No medical charts were checked and the 
microbiological diagnosis relied on positive PCR on any 
fluid, and/or positive MAT and/or positive IgM [16].

A confirmed case of BU was defined as a probable case 
with a clinically compatible cutaneous or bone lesion 
meeting the WHO clinical definition of BU [17] and 
the detection of M. ulcerans in smear or by histological 
examination using Ziehl–Neelsen microscopy or/and 
IS2404 PCR.

In both cases, we excluded duplicate entries based on 
the address of the patient; to exclude patients with recur-
rent infection or reinfection. The age, sex, date of diag-
nosis and the spatial coordinates (Cartesian coordinates) 
of the patient’s residence were extracted from the central 
hospital database managed by the specialist in-charge. 
The cases were projected at WGS84/UTM21 onto a 
shapefile (.shp) and the same coordinate reference system 
(CRS) was maintained for all spatial and statistical analy-
sis done.

Non‑spatial vs spatial modelling
To test the objectives of our study, we developed non-
spatial and spatial models using bayesian regression to 
identify if there was a spatial structure in the distribu-
tion of the cases or if the cases occurred in random. The 
model achieving a better fit was chosen. We also analyzed 
the influence of spatial drivers such as landscape and cli-
mate on distribution in the models. Finally, we compared 
the significant models of both the diseases under study to 
delineate the similarities in the biogeography of two bac-
terial diseases of similar freshwater origins.
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Topography
A one arc-second digital elevation model (DEM) of 30 m 
resolution, derived from NASA Version 3.0 Shuttle Radar 
Topography Mission (SRTM) imagery available in the 
United States Geological Survey (USGS) website, was 
constructed using QGIS (version: 2.8, Las Palmas). As 
the SRTM Global 1 arc-second product from 2016 is void 
filled, no further processing was done prior to hydrologi-
cal modelling. The mean, minimum, maximum measures 
of the elevation and topological wetness index (TWI) 
were derived for each spatial point from a 30 m resolu-
tion DEM. TWI is an index measure that illustrates the 
capacity of a region to accumulate water in presence of 
rainfall [18]. TWI is a function of local upslope draining 
through a certain point per unit contour length (a) and 
slope (tanβ). We calculated TWI, ln(a/tanβ), from DEM 
models using TOPMODEL, a runoff method created by 
Beven and Kirby using to detect flood prone regions. 
The index detects potential ponding areas, regions of 
increased soil moisture, and rainfall runoff. The mean 

elevation was categorized into nine levels: 0–5  m, 
5–10  m, 10–50  m, 50–100  m, 100–200  m, 200–300  m, 
300–400 m, 400–500 m, and 500–600 m above sea level 
to explore the environmental attitude threshold for both 
infections.

Land cover data
To assess the relationship between land cover and dis-
ease incidence, we used the MODIS-based Global Land 
Cover Climatology data developed by the USGS [19]. 
The data is derived from the Collection 5.1 MCD12Q1 
land cover type data and is based across a time period of 
10 years (2000–2010). It provides the land cover classifi-
cation with the highest confidence as validated by Brox-
ton et al. The composite raster of French Guiana was cut 
from the global map, matched in scale and resolution to 
the topological raster and its land cover type was broadly 
classified into eight classes (Table 1) using QGIS. Due the 
persistent cloud cover over the trans-equatorial zone in 
the imagery prior to 2000, disease cases exclusively from 

Fig. 2 a Map of French Guiana showing the diverse land cover: primary forests in green, mangroves in olive, water in blue, urban area in 
red, shrubland in orange and cropland in yellow. Inset b Land cover map illustrating the proximity of primary forests to the urban regions of 
Cayenne, Remire-Montjoly and Matoury. c Insert is a graphical representation of the monthly average of total rainfall in millimeters (mm) from six 
meteorological station across FG; black bars represent the wet season and white bars dry season
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2000 to 2017 were used for the land cover model genera-
tion. To analyze the land cover surrounding the disease 
cases, spatial buffers of radius 2 km, 5 km and 10 km were 
constructed. The radii of the spatial buffers were chosen 
to represent the land use and the environment in proxim-
ity to the sample population. The proportion of the land 
cover class contained in the three buffers for each spatial 
point was extracted and the resulting land cover variables 
was used for the regression models. One of the limita-
tions in our study is the lack of land cover data at 30 m 
resolution for the years prior to 2000. As a result, the BU 
data prior to 2000 could not be used in the construction 
of land cover models and restricted the construction of 
the model combinations for BU. We chose to restrict the 
time period of land cover BU model, to focus on the spa-
tial drivers of disease emergence to test our hypothesis. 
Using topological, land cover, and climate grids at 30 m 
resolution eliminates the spatial discrepancy between the 
models and ensures the quality of the spatial data used.

Meteorological covariates
The meteorological data including the monthly maxi-
mum temperature  (Tmax), minimum temperature  (Tmin) 
and monthly total precipitation for the year 1968 to 2017 
were obtained from six meteorological stations distrib-
uted across FG. The data was provided by Météo France. 
The monthly variables matched the temporal resolution 
for the disease cases used for Bayesian modelling. Cli-
mate covariates were spatially interpolated from points to 
climate grids using an Inverse Distance Weighted (IDW) 
approach in QGIS. IDW uses the nearest neighbor inter-
polation method, which takes on the value of the closest 
sample [20]. However, using local interpolation might 
not show micro influences where neighboring data is not 
local enough. In our study we used meteorological data 
from six weather stations located in the most habited 
regions and across the country to mitigate the underes-
timation of micro influences. The spatial resolution of 
the climate grid models matched the DEM models to 

preserve the resolution through the multilevel modelling. 
The value of the pixel that fell under the points repre-
senting the spatial points in the shape file was extracted, 
resulting in monthly meteorological covariates for each 
spatial point. In addition, in the case of BU, for each spa-
tial point, the meteorological data 1 to 6 months prior to 
the reported date were also included to account for the 
unknown time of exposure, incubation period, appear-
ance of symptoms and delay in health seeking behavior. 
To illustrate, the observed climatic covariates for a case 
reported in mm/yy (m) at a specific spatial point (xy) is 
noted and the climatic observations 6 months  (m−1,  m−2, 
 m−3,  m−4,  m−5 and  m−6) prior to “m” are also included. 
The incubation period of leptospirosis is distinctly 
shorter i.e. around 14  days, and so lag time was not 
included for leptospirosis.

Regression modelling
To identify the significant relationships between the two 
diseases and the various topographical, landscape, mete-
orological and demographic variables across the country, 
regression modelling was used. We used mixed effects 
Markov Chain Monte Carlo approach for developing 
non-spatial and spatial models. To achieve optimal power 
in the regression models, we generated random spatial 
points across a spatial polygon file of FG (water bodies 
were excluded) stratified by the proportion of population 
in each commune. The number of background points was 
optimized by power calculation using G power (version 
3.1) and an a priori number of 500 spatial points (approx-
imate 1:2 = presence:absence ratio) were generated as 
controls. The same set of background points were used in 
both leptospirosis and BU modelling. To address the tem-
poral nature of the controls, dates in dd/mm/yyyy format 
were randomly generated for the spatial point across the 
time periods; from 2007 to 2017 for the leptospirosis 
dataset and from 1968 to 2017 for the BU dataset.

Non‑spatial models
A non-spatial generalized liner model (GLM) was tested 
on the 232 and 236 cases of leptospirosis and BU respec-
tively, and the strength of their association with elevation, 
landscape and climate covariates. The predictor covari-
ates for each case was indexed by location, K = {ki,…,k}, 
where each k is a vector recording of the longitude and 
latitude at UTM 21 N projection. The response variable 
y(k) was the presence or absence of disease at generic 
location k. The covariates for each response variable at 
k were recorded. Simple logistic regression was done 
to check for the presence of association between the 
presence of case and each covariate. We then used a 
Markov Chain Monte Carlo (MCMC) sampler for Mul-
tivariate Generalised Linear Mixed Models to establish 

Table 1 Proportion of each land cover in French Guiana

Land cover class Proportion of total 
land covered (%)

1. Primary forest 96.38

2. Mangroves 2.14

3. Water 0.77

4. Shrub land (flooded and non-flooded) 0.28

5. Crop land 0.13

6. Mosaic forest 0.13

7. Urban 0.12

8. Grassland 0.04
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the relationship between the dependent variable and 
the covariates introduced as fixed effects. The “MCM-
Cglmm” package was used for analysis [21]. The DIC was 
extracted from the models for comparison with the spa-
tial models.

Spatial models
All models were generated using the “binomial” family 
of spGLM function from spBayes R package. The model 
parameters were estimated using MCMC methods utiliz-
ing an adaptive Metropolis (AM) algorithm with a 43% 
acceptance rate [22]. The starting coefficient values and 
the beta tuning were obtained from the non-spatial logis-
tic regression models. The predictor variables not sig-
nificant in the logistic and MCMC regression non-spatial 
models were not analyzed in spatial modeling. Both the 
spatial and non-spatial models for each disease were 
tested individually for elevation and TWI under topo-
graphically variables, each of the land cover predictors, 
and climatic covariates such as maximum, minimum 
temperatures and total precipitation.

Model comparison and verification
Models were compared using the deviance information 
criterion (DIC) for the Bayesian models. The models with 
lower DIC values indicate better model performance 
during model comparison similar to the AIC values [23]. 
Prior and posterior predictive checks were conducted to 
ensure the robustness of the models. All statistical tests 
were set at the conventional 5% significance level. All sta-
tistical models are based on assumptions and the spatial 
models in our study are no exception. In the Bayesian 
spatial models used, data was assumed to have a spatial 
structure. This assumption was mitigated by conduct-
ing a preliminary spatial cluster analysis to confirm the 
presence of a spatial structure of the leptospirosis and 
BU cases. The cluster analysis was done using satscan R 
package. The area-level random effects are not assumed 
constant but is under the assumption that the outcome 
between two neighboring spatial points is more similar 
than that between two distant spatial points in Bayesian 
models. Statistical R packages and datasets used for each 
model are detailed in Additional file 1: Table S1.

Results
Our results show that leptospirosis was widely distrib-
uted across FG, occurring in 18 of the 22 communes 
(Additional file 1: Table S2). The incidence of leptospiro-
sis in FG was found to be 0.96 [95% confidence interval 
0.8–1.1] per 1000 people during the period 2007–2017. 
BU was found to be restricted to the cities and towns 
along the coast, occurring in nine communes. Dur-
ing 1969–2017, the incidence of BU was found to be 1.9 

[95% CI 1.7–2.2] per 1000 people in FG. The incidences 
of both diseases for each commune has been provided in 
Additional file 1: Table S2.

Spatial vs non‑spatial models
Our results demonstrate that most spatial models (9 out 
of 12; 75%) produced lower DIC values in comparison to 
the non-spatial models (Table 2). This illustrates a spatial 
dependence of leptospirosis and BU cases distribution 
in FG towards environmental drivers such as elevation, 
topological wetness index (TWI), land cover and climate. 
On comparison of the regression coefficients between 
the spatial and non-spatial models, we observed that the 
non-spatial models overestimated the significance of the 
environmental variables likely attributed to the violation 
of the basic model assumptions (Table 3).

Topological models
The spatial elevation models of leptospirosis and BU had 
lower DIC values than the non-spatial elevation mod-
els (Table  3). Elevation over 10  m (10–50  m, 50–100  m 
and 100–200 m) were negatively correlated to the pres-
ence of leptospirosis in the geographical area [95% CI 
− 0.1759 to − 0.0505, − 0.1690 to − 0.0831, − 0.1178 to 
− 0.0443 respectively]. Similarly, elevation at 10–50  m 
was inversely associated with the presence of BU [95% 
CI − 0.0946 to − 0.0301]. TWI was found to be a spa-
tially dependent environmental driver with a significant 
positive correlation with the disease positivity ([95% CI 
0.1353 to 0.2461 and 0.0651 to 0.1245] for leptospirosis 
and BU respectively).

Table 2 DIC value of the  leptospirosis and BU non-spatial 
vs spatial models

Model Disease dataset Non‑
spatial 
model

Spatial model

Mean elevation Leptospirosis 683.01 413.67

Buruli Ulcer 626.81 542.97

Mean TWI Leptospirosis 842.56 523.21

Buruli Ulcer 875.98 676.46

Land cover at 2 km Leptospirosis 665.18 574.21

Buruli Ulcer 6.61 304.14

Land cover at 5 km Leptospirosis 591.65 534.07

Buruli Ulcer 16.73 301.28

Land cover at 10 km Leptospirosis 626.14 512.82

Buruli Ulcer 6.05 279.83

Minimum temperature Leptospirosis 748.95 518.39

Buruli Ulcer 928.31 674.07
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Land cover
The spatial models of leptospirosis achieved a better fit 
than those of BU in comparison to the non-spatial mod-
els for predictor variables, land cover at 2, 5 and 10 km. 
At a spatial buffer of 2 km, the presence of leptospirosis 
was inversely related to the presence of primary rain-
forest [95% CI − 5.4550 to − 2.926]. While at buffer of 
5  km, the presence of mangroves [95% CI − 7.5813 to 
− 2.277] along with primary rainforest [95% CI − 8.5772 
to − 4.834] negatively influenced the distribution of lep-
tospirosis. At a buffer of 10 km, primary forest [95% CI 
− 9.1840 to − 5.3070] remained a negative predictor of 
leptospirosis while presence of cropland [95% CI 5.5302 
to 18.2710] was found to have a positive influence. The 
distribution of BU on the other hand was found to be 
spatially independent based on the DIC values. How-
ever, the confidence intervals of the non-spatial models 
were wide and so the spatial models are reported instead 
given their methodological robustness. At spatial buffers 
of 2 km, urban land cover [95% CI 1.6300 to 2.934] along 
with cropland [95% CI 4.1979 to 6.888] were found to be 

a positive predictor of BU incidence. No significant vari-
ables were observed at buffer of 5  km. The presence of 
mangroves [95% CI − 7.7912 to − 2.3001] and primary 
rainforest [95% CI − 6.7331 to − 3.4672] were inversely 
associated with the presence of BU disease.

Meteorological covariates
Increase in the minimum monthly temperature  (Tmin) 
was found to have a positive influence in the distribution 
of leptospirosis and BU. The leptospirosis spatial model 
demonstrated a significant association with the predic-
tor variable,  Tmin [95% CI 1.128 to 1.339] at month zero 
while in the BU spatial model, the regression coefficient 
was not significant. The other meteorological variables, 
maximum temperature and total precipitation, were 
found not significant in the non-spatial models.

Model combinations
For leptospirosis, the best fitting model combination was 
mean elevation, cropland at 10 km and  Tmin at month 0, 
i.e. the month of potential infection. BU cases from the 

Table 3 Comparison of predictor variables of the different statistical models: logistic, Bayesian non-spatial, and spatial 
models

The (+) and (−) indicate the positive or negative correlation of the significant coefficients and “X” denotes non-significant coefficients

Model Disease dataset Logistic regression Non‑spatial MCMC model Spatial MCMC model

Mean elevation Leptospirosis (−) (−) (−)

Buruli Ulcer (−) (−) (−)

Mean TWI Leptospirosis (+) (+) (+)

Buruli Ulcer (+) (+) (+)

Land cover at 2 km Leptospirosis (−) primary forest (−) primary forest (−) primary forest

Buruli Ulcer (+) urban (+) urban (+) urban

(+) cropland (+) cropland (+) cropland

Land cover at 5 km Leptospirosis (−) primary forest (−) primary forest (−) primary forest

(−) mangroves (−) mangroves (−) mangroves

(−) urban (−) urban X

Buruli Ulcer (+) urban (+) urban X

(+) cropland (+) cropland X

Land cover at 10 km Leptospirosis (−) mangroves (−) mangroves X

(−) primary forest (−) primary forest (-) primary forest

(+) cropland (+) cropland (+) cropland

Buruli Ulcer (+) cropland (+) cropland (+) cropland

(−) urban (−) urban X

(−) mangroves (−) mangroves (−) mangroves

(−) primary forest (−) primary forest (−) primary forest

Maximum temperature Leptospirosis X X –

Buruli Ulcer X X –

Minimum temperature Leptospirosis (+) 0 month (+) 0 month (+) 0 month

Buruli Ulcer (+) − 4 months (+) − 4 months X

Total precipitation Leptospirosis X X –

Buruli Ulcer X X –
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year 2000 was used for the model combinations due to 
the lack of landscape covariates for the earlier years. The 
best model fit was found to be mean elevation, cropland 
at 10 km, and primary forest at 10 km.

Discussion
To our knowledge, this is the first study to identify and 
compare the effects of biogeographic factors on the spati-
otemporal distribution of two emerging bacterial diseases 
of aquatic origin at an ecological scale. Our main finding 
is that the statistical models demonstrate the significance 
of spatial structure in the distribution of the two diseases. 
The environmental covariates were found to significantly 
influence the spatial distribution of both diseases. The 
robustness of the spatial Bayesian models along with 
the narrow confidence intervals of the predictor vari-
ables and lower DIC values support our hypothesis that 
biogeographic factors influence the spatial distribution 
of the two diseases. The spatial structure of the two dis-
eases correspond with the geographical distribution of 
Leptospira spp. and M. ulcerans in the environment, as 
described previously in FG [24].

The top ranked model combination, ranked based on 
DIC, for both diseases included low elevation, high TWI 
and cropland at 10 km. This can be partly attributed to a 
higher proportion of population living in river basins of 
low elevation which attracts human settlements provid-
ing easy irrigation for agriculture. However, the inverse 
association with increased elevation and the positive 
relationship with the TWI, demonstrates that both dis-
eases show spatial predilection towards low-lying regions 
that are also prone to flooding. A prospective cohort 
study in Brazil showed that households at low elevation 
had a high leptospirosis infection risk [25]. WHO reports 
the increased propensity of leptospirosis outbreaks fol-
lowing floods as flooding facilitates the spread of the 
pathogen through proliferation of rodents which shed 
large amounts of pathogenic leptospires in their urine 
and thus increase the exposure to a susceptible popula-
tion [26]. The positive relationship between cropland and 
leptospirosis incidence is congruent with previous stud-
ies on leptospirosis that demonstrated that croplands and 
associated farming practices also enhanced the rodent 
population leading to increased exposure with surface 
water and soil contaminated by rodent excreta [27–29]. 
Other studies showed that freshwater bodies near rain-
forests were hotspots for leptospirosis [30, 31], that is 
also congruent with our observation of leptospirosis in 
villages found on the banks of the river Maroni that is 
surrounded with primary rainforest. The river basin and 
croplands were found to serve as a network that spa-
tially attracts and concentrate small mammals that are 

potential reservoirs to leptospirosis, thus maintaining the 
bacteria in the region.

In our study, the site of exposure to the leptospira was 
unknown and so we assumed that the patients were 
infected in the vicinity of their residence as demonstrated 
by various studies [32, 33]. This is however in contradic-
tion to le Turnier et al. [15], who hypothesized that occu-
pation such as gold mining in proximity to the primary 
forest was the likely source of infection in French Gui-
ana. If that were the case, our spatial models would not 
demonstrate a significant spatial structure but rather a 
random occurrence of cases. Our results are further sup-
ported by a recent study from French Guiana [24], which 
carried out environmental microbiological sampling 
for Leptospira spp. in urban and rural areas in proxim-
ity to forests. The study observed that the bacteria were 
detected in modified urban ecosystems rather than in 
areas near forests.

Low elevation, river basins and agricultural activities 
were found to be also significant risk factors in the spa-
tial distribution of BU. The BU cases were found occupy 
regions known to be prone to flooding in accordance 
to the cartographic regulatory document assessing the 
flood-prone areas in the commune known as the “plan 
de prevention du risque inondation” (PPRI) (Fig. 3). Stud-
ies have demonstrated the occurrence of BU disease 
outbreaks in West Africa and Australia associated with 
unprecedented flooding of rivers and lakes, damming 
of rivers and modification of wetlands into agricultural 
lands or recreational facilities [34, 35]. Flooding has been 
proposed to facilitate the transfer of M. ulcerans among 
aquatic reservoirs by providing a potential route for 
inter-water body dispersion [14, 34]. Previous studies in 
FG detected positive samples of M. ulcerans from fresh-
water bodies in the floodplains [36]. We observed a sharp 
decline in the incidence of cases in the region of Sin-
namary following 1994, which corresponds to the con-
struction of the Petit-Saut dam (Fig. 3) on the Sinnamary 
River. The building of the reservoir has been shown to 
influence flooding, in this case with a potential reduction 
of exposure to the pathogen in a susceptible population 
resulting in 11.38% annual decrease in incidence (p-value: 
0.001) as supported by previous work from FG [11]. In 
West Africa, studies have demonstrated a positive associ-
ation between BU incidence and agriculture [37–40], and 
a case–control study in Benin showed that farmers were 
associated with an increased risk of BU [37]. Overall, 
agricultural regions were found to have higher prevalence 
of BU due to an increase in nutrients favorable to biofilm 
growth and also decrease in dissolved oxygen content in 
surrounding freshwater bodies, which provides an ideal 
environment for M. ulcerans’s persistence [41]. Both bac-
teria occupying similar aquatic niche, despite of differing 
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modes of transmission (Fig. 1), show similar relationships 
with topological risk factors, suggesting that low eleva-
tion, flood-prone regions near croplands are common 
risk factors for these specific bacterial diseases.

Interestingly our results demonstrate a positive rela-
tionship between urban land cover and BU incidence, 
which is in contradiction with other land cover studies 
conducted in West Africa on BU prevalence [37, 42]. The 
results from our datasets demonstrate that in the years 
following 2000, 79% of the new BU cases occurred in 
urban settings in comparison to 52% in the earlier years 
(79% vs 52%; p-value < 0.0001, 95% CI 14.96–37.94). This 
is supported by a recent study conducted in FG that also 
showed that modified urban ecosystems might favor BU 
emergence [24]. Also, the increasing number of cases 
in the urban regions of Victoria, Australia, provides a 
new perspective to BU incidence, which was previously 
thought to be restricted to rural areas [43].

The increased urban incidence of BU was demon-
strated by the sharp rise of the disease in the sub-urban 

populations, namely Rémire-Montjoly (RM) and Matoury 
(Fig. 3) between the years 2002 and 2004. These regions 
were subjected to deforestation, modification of marshy 
lowlands into habitable areas during the early 2000s, as 
evidenced by the increase in annual rate of population 
growth by 3.3 and 7.8 between the years 1990–1999, 1.9 
and 4.6 between 1999–2010 in RM and Matoury respec-
tively. It is worth noting that these regions are more 
habited due to increased urbanization along the coastal 
regions resulting in large proportion of susceptible popu-
lation. However, in contrast, the regions near the coast 
in Benin were found to have lower than expected BU 
prevalence, which was attributed to an access of pumped 
water sources in urban settings [37]. We propose that 
flood-prone regions associated with an increasing naïve 
population is at risk to develop BU due to the persistent 
maintenance of the bacteria in the environment as seen 
in Australia [44, 45].

Whilst previous studies from FG, including a time-
series analysis, report the influence of rainfall on both 

Fig. 3 a BU cases (in yellow) occupying flood-prone regions along the banks of the major rivers in French Guiana. b BU cases in the flood-prone 
urban regions of Cayenne, Remire-Montjoly (RM) and Matoury with (1) zone red: regions in high risk of flooding, (2) zone blue: regions in average 
risk, and (3) zone purple: regions of low risk
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disease incidences [15, 46], our study being a spatial 
biogeographical analysis did not found a significant cor-
relation between disease incidences and rainfall. We 
observed that increase in minimum temperature during 
the time of potential infection can influence the preva-
lence of the diseases. Our results establish a positive rela-
tionship between increase in  Tmin at − 4  months  (m−4) 
prior BU diagnosis, which corresponds approximately to 
the time of potential infection (i.e. the incubation period 
of the disease) [47]. A study from Australia also reports 
higher BU disease incidence with  Tmin conditions, with 
BU occurrence associated with  Tmin at − 18  months. 
However, such a lag phase does not correspond to the 
incubation period of the bacteria [45]. By comparison, 
leptospirosis was found to have a similar association to 
 Tmin during the month of diagnosis. Increase in  Tmin 
(1  °C) at a lag of 11  weeks was significantly associated 
with the increase in leptospirosis cases in the Republic of 
Korea [48]. In our study, the association between increase 
in  Tmin during the potential exposure period and disease 
incidence demonstrates that increase in minimum tem-
perature plays a significant role during infection. It is 
interesting to note that studies on climate change report 
warming trends in minimum temperatures  (Tmin) over 
time due to greater heat accumulation with consistent 
 Tmin increasing more than  Tmax [49]. This establishes an 
indirect connection between climate change and increas-
ing incidence of both diseases. However, a time-series 
analysis will be needed to analyze this relationship fur-
ther and to forecast potential implications in the future 
emergence of both diseases under scenarios of climate 
change in FG. This research has demonstrated that two 
aquatic diseases of bacterial origin are spatially depend-
ent at an ecological scale and a biogeographic approach 
is important in identifying the factors influencing the 
disease emergence and maintenance in a region. This 
approach is especially useful when information on the 
host and pathogen distribution are unavailable.

Conclusions
On comparing the environmental factors influenc-
ing the spatial distribution of two aquatic bacterial dis-
eases of freshwater origin, we conclude that low-lying 
regions prone to flooding with near-by agricultural land 
and increased minimum temperature during the time of 
infection were found to be at risk for the increased inci-
dence of both diseases. The trends of positive popula-
tion growth rate in the urban regions of FG predict that 
deforestation and habitat fragmentation will continue 
to accommodate the needs of the growing population. 
Such human-driven regional environmental modifica-
tions along with global climate change affects vulnerable 
freshwater systems resulting in increased host–pathogen 

contact and ensure the maintenance of the aquatic bac-
teria at an ecological scale. Based on our results, we rec-
ommend the following to reduce the incidence of the two 
disease in developing tropical regions:

 i. Better urban planning by construction in regions 
of low flood risk or low TWI, calculated from 
global satellite imagery. Regions of high flood risk 
need better drainage systems that would decrease 
human-pathogen contact.

 ii. Croplands to be developed further away (over 
10  km) from the population would also reduce 
human contact with rodents and with aquatic sys-
tems favorable for M. ulcerans and Leptospira sp.

 iii. Increased minimum temperature during the time 
of infection signals the play of global environmen-
tal factors i.e. climate change. Climate change to be 
tackled at global scale to reduce the risk of disease 
emergence in tropical regions.

 iv. Finally, conducting passive disease surveillance 
and measuring disease risk using biogeographic 
approach in regions where data on pathogen and 
reservoirs is scarce, is useful in the prevention and 
control of diseases.
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