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Abstract. The article studies the nutrient transfer mechanism and its con-

trol for mixed cropping systems. It presents a mathematical analysis and op-
timal control of the absorbed nutrient concentration, governed by a transport-

diffusion equation in a bounded domain near the root system, satisfying to the

Michaelis-Menten uptake law.
The existence, uniqueness and positivity of a solution (the absorbed con-

centration) is proved. We also show that for a given plant we can determine

the optimal amount of required nutrients for its growth. The characterization
of the optimal control leading to the desired concentration at the root surface

is obtained. Finally, some numerical simulations to evaluate the theoretical
results are proposed.

1. Introduction. Plant nutrition has always been a main challenge in crop produc-
tion but chemical fertilizers can be no longer the only sources of nutrients for crop
growth and development. Switching from conventional intensive cropping systems
to ecologically ones is necessary (see Griffon [6]). The awareness of the dependency
to fossil fuels for the production of chemical inputs and the enactment of new rules
for a healthier environment, have led to other agroecological alternatives in fer-
tilizing practices. Plant growth is strongly linked to the amount of soil nutrients
absorbed from its roots. These nutrients are produced naturally, they are present
in the groundsoil at various levels of concentration. They may also be provided by
humans in the form of chemical fertilizers, or by a secondary companion crop plants.
It is the case for the nitrogen fixation and transfer from nitrogen fixing crops to
cash crops in mixed cropping systems (see Jalonen et al. [8][9], Daudin and Sierra
[3]).
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Modeling is required to understand the dynamics and the nutrient transfer mech-
anism and to define and test scenarii for the optimization of crop nutrition and
sustainable systems. The root nutrient uptake as well as in solute movement in the
soil are well explained by Tinker and Nye in [22], where they describe the uptake
and nutrient motion processes from a biological and chemical point of view, and
where they give the model of nutrient uptake and transfer using partial differential
equations (PDE) known as the Nye-Tinker-Barber (NTB) system. Plant nutrition
models that have emerged in the 60s with, among others, the works by Nye [14] and
by Nye and Marriott [15]. See also the work by Itoh and Barber [7], or by Cushman
[2] who suggests a general framework of the model of nutrient uptake by roots in
which he adds a term called source or sink that models either the increase or the
decrease in solute concentration w.r.t time and space.

More recently, Roose [19][20] used the NTB model in order to reflect in a more
accurate way the morphology of the root system (modeling of root growth, root
hair, mycorrhizae, ..) and the spatio-temporal dynamics of the solute in the soil.
We also mention a recent work by Ptashnik [17], where the author studied a process
of nutrient uptake by a single root branch using the asymptotic expansion method
or a similar work by Schnepf et al. [21].

In the above mentioned works, no attempt was made concerning the question of
optimal control for crop models. In this article we focus on the modeling of plant
nutrient uptake by roots from multiple nutrient sources, and more precisely, on the
determination of the optimal amount of nutrients that must be provided in the soil
so that the plant grows in the best conditions to satisfy its demand.

This article is built as follows: in Section 2 we present the model of nutrient
uptake and we provide a proof of existence and uniqueness of its solution. In
Section 3, we study the optimal control question and we give a characterization of
the optimal solution. Section 4 is devoted to some simulations where we compute
the optimal nutrient input for a given plant’s growth in time.

2. Statement of the problem. Let Ω ∈ R3 be the part of the soil close to the
root called the rhizosphere, of regular boundary Γ = Γ1 ∪Γ2, such that Γ1 ∩Γ2 = ∅
as shown in Figure 1. Here, Γ1 represents the root surface and Γ2 plays the role of
the rhizosphere frontier to the rest of the soil. During a time t ∈ (0, T ), the nutrient
transport-diffusion and uptake by the roots is here described by the following Nye-
Tinker-Barber (NTB) system:

α
∂c

∂t
+ q · ∇c−D∆c = 0 in Q :=]0, T [×Ω,

divq = 0 in Q,

(D∇c− 1
2qc) · n =

Ic

K
on Σ1 :=]0, T [×Γ1,

(D∇c− 1
2qc) · n = 0 on Σ2 :=]0, T [×Γ2,

c(0, x) = c0(x) in Ω,

(1)

where c = c(t, x) is the concentration of nutrient density at time t with position
x. The coefficient α = b + θ is a constant, where b is the buffer power and θ the
liquide saturation, the vector q = q(t, x) is the Darcy flux, and D the diffusion
coefficient, which is a positive constant. The function h(c) = Ic/K is the Michaelis-
Menten function, and represents the inflow density to the root surface, where I is
the maximum uptake constant, and K is the Michaelis-Menten constant.
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Figure 1. The rhizosphere Ω is delimited by the two boundaries
Γ1 and Γ2, where Γ1 represents the root surface and where Γ2 the
boundary of the rhizosphere where the nutrients enter.

2.1. Existence of a solution to the NTB problem. This part is devoted to
the weak formulation to problem (1) and to the proof of the existence of a positive
unique solution c(t, x). We will consider the function t 7→ c(t; .) ∈ V such that
V ⊂ H1(Ω). More precisely, consider the Hilbert space:

V =
{
ψ ∈ H1(Ω); ψ|

Γ2
= 0
}
,

endowed with the H1(Ω) norm and equivalently with its semi-norm ‖∇ψ‖L2(Ω). We

also consider L2(Ω) as the pivot space i.e., V ⊂ L2(Ω) ⊂ V ′.

Lemma 2.1. The problem (1) has the equivalent weak formulation given by the
following. Given c0 ∈ V , find c : t ∈ [0, T ] 7→ c(t) ∈ V such that : α

d

dt

∫
Ω

c(t)ψ dx+ a(t; c, ψ) = 0 a.e. t ∈]0, T [, ∀ ψ ∈ V,

c(0, x) = c0(x),
(2)

where

a(t; c, ψ) =
1

2

∫
Ω

q · (ψ∇c− c∇ψ) dx+D

∫
Ω

∇c∇ψ dx−
∫

Γ1

Ic

K
ψ dx. (3)

Remark 1. We suppose that the concentration c(t; .) belongs the set of continuous
functions in time c ∈ L2(]0, T [;V )∩C(]0, T [;L2(Ω)). The function c(t) is considered
as an element of V which represents the function x 7→ c(t, x) for all t ∈ [0, T ]. We
point out that the regularity hypothesis on time is natural. The weak formulation
(2)-(3) is easy to get, and we refer to Allaire [1] or to Louison [13] for details.

Proposition 1 (Existence). We suppose that the flux |q| is uniformly bounded
q ∈ L∞(Q). Then, there is a unique solution c ∈ V to the problem (2)-(3).

Proof. We show first that the bilinear form a is continuous. We have by the Cauchy-
Schwartz inequality:

|a(t; c, ψ)| ≤ (q∞ +D)‖c‖V ‖ψ‖V + ‖c‖L2(Γ1)‖ψ‖L2(Γ1)

where q∞ = ‖q‖L∞(Q). Now since ϕ|
Γ2

= 0, for ϕ = c, ψ, we have

‖ϕ‖2L2(Γ1) = 2

∫
Ω

ϕ∇ϕdx ≤ 2‖ϕ‖L2(Ω)‖∇ϕ‖L2(Ω) ≤ 2‖ϕ‖2V .
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Hence, there is a positive constant C > 0 such that |a(t; c, ψ)| ≤ C‖c‖V ‖ψ‖V with
C = q∞ +D + 2, which implies that a is continuous.

Now we show that a is coercive in the sense of evolution problems. We have:

a(t; c, c) = D

∫
Ω

|∇c|2 dx−
∫

Γ1

I

K
|c|2 dx ≥ D‖∇c‖2L2(Ω) − ‖c‖

2
L2(Γ1). (4)

From the Young inequality we obtain ‖c‖2L2(Γ1) ≤ γ‖c‖
2
L2(Ω) + 1

γ ‖∇c‖
2
L2(Ω). Hence,

the bilinear form a satisfies the conditions of J.-L. Lions’s Theorem (Cf. Lions-
Magenes [12]), and we have G̊arding’s inequality:

a(t; c, c) ≥
(
D − 1

γ

)
‖c‖2V − γ‖c‖2L2(Ω) ∀ c ∈ V, (5)

where γ is a positive constant chosen such that we have γD > 1. The hypothesis of
the Lions theorem are then satisfied, and (1) has a unique weak solution c ∈ V .

2.2. Positivity of the solution. As usual, we denote by c = c+ − c−, for the
solution c ∈ V , where c+ and c− are the classical nonnegative parts of c. We have
the following result:

Lemma 2.2 (Positivity). Let be c = c(x, t) the solution to the NTB system. Suppose
that c0 ≥ 0 and that c|

Σ1
≥ 0, then c is non negative and we have:

c(T, .) ≥ 0, ∀T > 0.

Proof. We will show that c− = 0. We multiply the NTB system by c− and we
integrate by parts over Q. Since (∂tc

+)c− = (∇c+)c− = (∆c+)c− = 0, we have for
each integral :

−α
∫ T

0

∫
Ω

(
∂c−

∂t
)c− dxdt = −α

2

(∫
Ω

|c−(T )|2 − |c−(0)|2 dx
)
,

and with the Gauss fromula div q = 0 in Ω,

−
∫
Q

(q.∇c−)c− dxdt = −
∫ T

0

1

2

∫
Γ

(q.c−)c−.n dx dt,

and,

D

∫
Q

(
∆c−

)
c− dxdt = D

∫
Σ

(
∇c−

)
c−.n dxdt−D

∫
Q

∣∣∣∇c−∣∣∣2 dxdt.
thanks to the Green formula. Adding the three integrals we find:

−α
2

(∫
Ω

|c−(T )|2 − |c−(0)|2 dx
)

+

∫
Σ1

I

K
|c−|2.n dxdt = D

∫
Q

|∇c−|2 dxdt ≥ 0.

Now since c−|
Σ1

= 0 we obtain ‖c−(T )‖L2(Ω) ≤ ‖c−(0)‖L2(Ω) = 0, ∀ T ≥ 0.

3. Optimal control for the NTB model. We here study the optimal control for
the NTB system (1). Nutrients come from the second plant by exudates through
Γ2, and there, we put a control function. First, we rewrite the NTB system using
simple notations: 

A c = 0 in Q :=]0, T [×Ω,

B c .n =
I

K
c on Σ1 =]0, T [×Γ1,

B c .n = w on Σ2 =]0, T [×Γ2,
c(0, x) = 0 in Ω,

(6)
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where we have:

A = α
∂

∂t
+ q.∇−D∆, and B = D∇− 1

2
q.

Here, w = −v where v is a positive control function. It corresponds to the addition
of nutrient in the soil. It is prescribed in the rhizosphere frontier Γ2 as an inflow
nutrient.

The existence of a solution to (6) can be deduced from the one of Proposition 1,
since we have :

Corollary 1. Under the hypothesis of Proposition 1, we suppose that w ∈ L2(Σ2).
Then, there is a unique solution c ∈ V to the weak problem (2) with c0 = 0, and
with a(t; ., .) in (5) replaced by :

b(t; c, ψ) = a(t; c, ψ)−
∫

Γ2

wψ dx, ψ ∈ V. (7)

The goal in this paper is to characterize the control which minimizes the cost
function:

J(v) = ‖c(v)− c̃‖2L2(Σ1) +N‖v‖2L2(Σ2), (8)

where c̃ is the observation given for L2(Σ1), and where N > 0 is a positive constant.
The control function v is taken in the region L2(Σ2) of Ω̄. The control problem is
similar to a regional control problem as introduced by El Jai et al. [4], and El Jai
[5] for example.

3.1. Existence of the optimal control.

Proposition 2. There exists a unique u ∈ U = L2(Σ2) such that

J(u) = inf
v∈U

J(v).

Proof. The existence of the control is easy to prove since the L2 norm in J is
continuous and coercive. Moreover, we have

J(v) ≥ J(0) = 0, ∀ v ∈ L2(Σ2),

hence there exists a positive constant m > 0 such that m = inf
v∈L2(Σ2))

J(v).

Let vn be a minimizing sequence satisfying m = lim
n→∞

J(vn). For every n ∈ N,

n > n0,

J(0) ≤ J(vn) ≤ m+ 1.

Hence, there exists a constant d ≥
√
m+ 1 independent of n such that

‖vn‖L2(Σ2) ≤ d, and ‖c(vn)‖L2(Σ1) ≤ d.

Therefore vn ⇀ u ∈ L2(Σ2) weakly, and c(vn) ⇀ c(u) weakly in L2(Σ1) because c
is a continuous function.

Finally, we deduce from the strict convexity of the cost function J that u is
unique.
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3.2. Characterization of the optimal control. We give a first characterization
of the optimal control u ∈ L2(Σ2) in the following lemma:

Lemma 3.1. The optimal control u of the problem (6)-(8) satisfies to :∫
Σ1

(c(u)− c̃) c(w).n dxdt+N

∫
Σ2

uw.n dxdt = 0, ∀w ∈ L2(Σ2). (9)

Proof. We have the Euler-Lagrange equality satisfied by the optimal control u:

lim
λ→0

(
J(u+ λw)− J(u)

λ

)
= 0, ∀w ∈ L2(Σ2).

Then

J(u+ λw)− J(u)

λ
= λ||c(w)||2L2(Σ1) + 2λ〈c(u)− c̃, c(w)〉L2(Σ1)

+2N〈u,w〉L2(Σ2) + λN ||w||2L2(Σ2).
(10)

Hence,

lim
λ→0

(
J(u+ λw)− J(u)

λ

)
= 2〈c(u)− c̃, c(w)〉L2(Σ1) + 2N〈u,w〉L2(Σ2) = 0,

which is the desired equality (9).

Γ

h(c) u

Γ21

Figure 2. The Michaelis-Menten uptake function h(c) = Ic
K pre-

scribed on the root surface Γ1. The boundary control u(t, x), which
represents an addition of nutrient into the rhizosphere region is pre-
scribed on Γ2.

Now, we give the optimality system (SO) for the optimal control u. We have the
following theorem:

Theorem 3.2 (Optimality system). The optimal control u for the problem (6)-(8)
is characterized by the triplet {u, c(u), p(u)} solution to the optimality system:

A c = 0 A∗p = 0 in Q,
B c .n = I

K c B∗ p .n = c(u)− c̃+ I
K p on Σ1,

B c .n = −u B∗ p .n = 0 on Σ2,
c(0, x) = 0 p(T, x) = 0 in Ω,

(11)

and by the adjoint equation :

p+Nu = 0 in L2(Σ2). (12)
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Proof. We introduce the function p = p(t, x) solution to the adjoint problem :
A∗p = 0 in Q,
B∗ p .n = c(u)− c̃+ I

K p on Σ1,
B∗ p .n = 0 on Σ2,
p(T, x) = 0 in Ω.

(13)

where

A∗ = −α ∂
∂t
− q.∇−D∆, B∗ = −D∇− 1

2
q.

We multiply the first equation of (13) by c(w), and we integrate by parts over
Q. We first have :

−α
∫
Q

(∂p
∂t

)
c(w) dxdt = α

∫
Q

(∂c
∂t

)
(w) p dxdt. (14)

With the Gauss property we have q.∇p = div (qp)−p div q = div (qp). We integrate
over x, we have on one hand :∫

Q

(
q.∇p

)
c(w) dxdt =

∫
Q

div (qp)c(w) dxdt

=

∫
Q

(
div
(

(qp)c(w)
)
− qp.∇c(w)

)
dxdt

=

∫
Σ

qpc(w)ndxdt−
∫
Q

qp.∇c(w) dxdt

(15)

using the Gauss theorem. On the other hand, using the Green formula we have :

−
∫
Q

(
D∆p

)
c(w) dxdt =−

∫
Σ

(
D∇p

)
c(w).n dxdt+

∫
Σ

(
D∇c(w)

)
p.n dxdt

−
∫
Q

(
D∆c(w)

)
p dxdt.

We resume by

0 =

∫
Q

(
A∗p

)
c(w) dxdt

=

∫
Q

(
α
∂c(w)

∂t
+ q.∇c(w)−D∆c(w)

)
p dxdt

−
∫

Σ

(
D∇p+

1

2
qp

)
c(w).n dxdt+

∫
Σ

(
D∇c(w)− 1

2
qc(w)

)
p.n dxdt

= −
∫

Σ1

(
c̃− c(u) +

I

K
p

)
c(w).n dxdt+

∫
Σ1

I

K
c(w)p.n dxdt

−
∫

Σ2

wp.n dxdt

= −
∫

Σ1

(
c̃− c(u)

)
c(w).n dxdt−

∫
Σ2

wp.n dxdt.

Hence,

〈c(u)− c̃, c(w)〉L2(Σ1) = 〈w, p〉L2(Σ2). (16)

Replacing in (9), we finally have :

〈p+Nu,w〉L2(Σ2) = 0, ∀ w ∈ L2(Σ2).
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4. Numerical results. To ease reader’s reading and understanding in the inter-
pretation of the below results we make the computations in one dimension of space.
In this situation the spatial motion of nutrients is produced along an horizontal axis
]x0, xNx+1[ on which the point at the right extrema corresponds to the uptake point
at the root surface (Γ1 = xNx+1) and the point at the left extrema corresponds to
the input point of nutrients (Γ2 = x0). In this case the optimal control problem is
written by

[P ] =



min
v∈L2(Σ2)

J(v)

where

J(v) =

∫ T

0

[c(t, xNx+1)− c̃(t, xNx+1)]
2
dt+

N‖v‖2L2(Σ2)√
|xNx+1 − x0|

and where c satisfies the nutrient uptake model (6),
with Σ1 = (0, T )× {xNx+1} and Σ2 = (0, T )× {x0}.

The function c̃ is a given nutrient uptake dynamics at the root surface and v is
the searching control that solve the problem [P ].

The optimal control problem [P] is numerically solved by a Quasi-Newton method
whose the algorithm is available on Matlab tools or on Absoft software (see Picart
and Ainseba [16] who used the method for hyperbolic systems). Here we used the
latter with the BCONF routine which is well adapted for our problem. The solution
of NTB-system is numerically computed with a Difference Element scheme of Euler
kind that is reported in Annex. The parameters of the NTB-system are chosen so
that a spatial motion is observed on the time and space domain (0, 5)× [0, 1] that
is

q = 0.5, D = 0.1, α = 1, I = 0.001, K = 1,

with a space-discretization step equal to 0.1, and a time-discretization step equal
to 0.01.

We numerically test our problem with the function c̃ of Figure 3. The root
nutrient uptake is like a sigmoid curve that increases with time until to reach a
maximum nutrient uptake value of 2.8. The function c̃ is obtained by solving NTB-
system with a given control function that is represented in dotted curve on Figure
4 and called exact control function. The input of nutrients is a step-function equal
to one during the first 4 units of time and to 0 after that. The numerical result
consists in finding for this given nutrient uptake dynamics c̃ the optimal control
solution of problem [P ] that allows to reach it. For this, we initialize the Quasi-
Newton algorithm with the step-function represented by the double-dotted curve of
Figure 4. The optimal control solution is then obtained when the value of the cost
function J(v) at the optimal control solution is close to zero.

The optimal solution is given by the solid curve of Figure 4. The L2-error of
the difference between the estimated solution and the exact one (dotted curve) is of
order 1.5910−3 meaning that the QN’s algorithm has converged toward the exact
solution. In this example the numerical optimal solution is unique.

We conclude this work by a final remark:

Remark 2. In this paper we proposed a model of nutrient uptake by roots whose
origin is either the soil or root exudates from a secondary plant [6]. This model
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Figure 3. Nutrient uptake at the root surface with respect to
time. This curve is used to define the c̃ function in problem [P ].
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Figure 4. Nutrient input from exudates with respect to time. The
dotted curve is the control function used to construct the function c̃
by solving the NTB-system. The double dotted curve is the initial
control used in the Quasi-Newton algorithm. The solid curve is the
numerical solution of [P ].
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derives from the NTB model which describes the transport and diffusion of nutrients
through the soil to the root surface in general.

These initial theoretical and numerical results are encouraging for the study and
development of alternative methods to fertilizing plants through the soil or the
contribution of service plants for example.

5. Annex. Let Ω =]x1, xNx
[ be the domain of the space variable, with Nx the

space-point number. Let xi = i∆x be the space discretization point, for i = 1, Nx,
with ∆x the space discretization step. The time discretization point is defined by
tn = n∆t, with n ≥ 0 and ∆t the time discretization step. The numerical solution
of the NTB-system of (6) is given by the following scheme

cn+1
i − cni

∆t
= F (cni , xi, t

n),

for i from 1 to Nx and n ≥ 0, where

F (cni , xi, t
n) = − q

α

cni − cni−1

∆x
+
D

α

cni+1 − 2cni + cni−1

∆x2
.

We get a system of equations that can be rewritten as the following matrice form

Cn+1 =
∆t

α
ACn,

where A is given by

α
∆t −

q
∆x −

2D
∆x2

D
∆x2 . . . 0

q
∆x + D

∆x2
α
∆t −

q
∆x −

2D
∆x2

. . . 0

0
...

...
. . .

. . . D∆t
α∆x2

0 . . . q
∆x + D

∆x2
α
∆t −

q
∆x −

2D
∆x2


The boundary conditions at the point x0 and xNx+1 are respectively approximated
by

cnx0
= cn2 + ∆x

(
vn − q

2
cn1

)
,

cnxNx+1
= cnxNx−1

+ ∆x
(
hnNx

+
q

2
cnNx

)
,

for all time n ≥ 0.
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