Extending Kernel Testing To General Designs - PEPR Santé numérique
Pré-Publication, Document De Travail Année : 2024

Extending Kernel Testing To General Designs

Anthony Ozier-Lafontaine
  • Fonction : Auteur
Bertrand Michel
  • Fonction : Auteur

Résumé

Kernel-based testing has revolutionized the field of non-parametric tests through the embedding of distributions in an RKHS. This strategy has proven to be powerful and flexible, yet its applicability has been limited to the standard two-sample case, while practical situations often involve more complex experimental designs. To extend kernel testing to any design, we propose a linear model in the RKHS that allows for the decomposition of mean embeddings into additive functional effects. We then introduce a truncated kernel Hotelling-Lawley statistic to test the effects of the model, demonstrating that its asymptotic distribution is chi-square, which remains valid with its Nystrom approximation. We discuss a homoscedasticity assumption that, although absent in the standard two-sample case, is necessary for general designs. Finally, we illustrate our framework using a single-cell RNA sequencing dataset and provide kernel-based generalizations of classical diagnostic and exploration tools to broaden the scope of kernel testing in any experimental design.
Fichier principal
Vignette du fichier
2405.13799v1.pdf (808.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04747959 , version 1 (22-10-2024)

Identifiants

Citer

Anthony Ozier-Lafontaine, Franck Picard, Bertrand Michel. Extending Kernel Testing To General Designs. 2024. ⟨hal-04747959⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More