Tailoring Scientific Argument Mining for Scientific Literature Correction - SIGMA
Poster De Conférence Année : 2023

Tailoring Scientific Argument Mining for Scientific Literature Correction

Résumé

In this study, we examine the potential application of Scientific Argument Mining (SAM) in enhancing scientific literature correction processes. Specifically, we focus on evaluating SAM's effectiveness in assessing the influence of retracted citations on the accuracy of claims and results within the field of nanobiology. Our objectives include creating a novel SAM dataset derived from nanobiology articles, assessing the adaptability of current SAM frameworks to this new dataset, and offering a comprehensive synthesis of the existing SAM guidelines for scientific literature correction practices.
Fichier principal
Vignette du fichier
Ozturk_Poster.pdf (314.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04346693 , version 1 (15-12-2023)

Identifiants

  • HAL Id : hal-04346693 , version 1

Citer

Yagmur Ozturk, Cyril Labbé, François Portet. Tailoring Scientific Argument Mining for Scientific Literature Correction. Journée Natural Language Argumentation – GDR TAL – GDR RADIA, Nov 2023, Valbonne, France. ⟨hal-04346693⟩
48 Consultations
42 Téléchargements

Partager

More