Learning to Act in Decentralized Partially Observable MDPs - Laboratoire d’Excellence Intelligences des Mondes Urbains
Communication Dans Un Congrès Année : 2018

Learning to Act in Decentralized Partially Observable MDPs

Résumé

We address a long-standing open problem of reinforcement learning in decentralized partially observable Markov decision processes. Previous attempts focussed on different forms of generalized policy iteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simpler to store and update than policies. We derive, under certain conditions, the first near-optimal cooperative multi-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedy maximization by mixed-integer linear programming. Experiments show our approach can learn to act near-optimally in many finite domains from the literature.
Fichier principal
Vignette du fichier
paper.pdf (364.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01851806 , version 1 (30-07-2018)

Identifiants

  • HAL Id : hal-01851806 , version 1

Citer

Jilles Dibangoye, Olivier Buffet. Learning to Act in Decentralized Partially Observable MDPs. ICML 2018 - 35th International Conference on Machine Learning, Jul 2018, Stockholm, Sweden. pp.1233-1242. ⟨hal-01851806⟩
326 Consultations
147 Téléchargements

Partager

More