Admissible replacements for simplicial monoidal model categories
Résumé
Using Dugger’s construction of universal model categories, we produce replacements for simplicial and combinatorial symmetric monoidal model categories with better operadic properties. Namely, these replacements admit a model structure on algebras over any given colored operad.
As an application, we show that in the stable case, such symmetric monoidal model categories are classified by commutative ring spectra when the monoidal unit is a compact generator. In other words, they are strong monoidally Quillen equivalent to modules over a uniquely determined commutative ring spectrum.
Domaines
Mathématiques [math]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
licence |